Percolation properties of the dead leaves model, also known as confetti percolation, are considered. More precisely, we prove that the critical probability for confetti percolation with square‐shaped leaves is 1/2. This result is related to a question of Benjamini and Schramm concerning disk‐shaped leaves and can be seen as a variant of the Harris‐Kesten theorem for bond percolation. The proof is based on techniques developed by Bollobás and Riordan to determine the critical probability for Voronoi and Johnson‐Mehl percolation.