Asymptotic properties of collective-rearrangement algorithms

Abstract

We analyze asymptotic properties of collective-rearrangement algorithms being a class of dense packing algorithms. Traditionally, they transform finite systems of (possibly overlapping) particles into non-overlapping configurations by collective rearrangement of particles in finitely many steps. We consider the convergence of such algorithms for not necessarily finite input data, which means that the configuration of particles in any bounded sampling window remains unchanged after finitely many rearrangement steps. More precisely, we derive sufficient conditions implying the convergence of such algorithms when a stationary process of particles is used as input. We also provide numerical results and present an application in computational materials science.

Publication
ESAIM Probab. Stat.